Math 261
 Fall 2023
 Lecture 17

Feb 19-8:47 AM

Evaluate $\lim _{x \rightarrow 0} \frac{4 x-\sin k x}{x}=\frac{4(0)-\sin 0}{0}=\frac{0}{0}$ I.F.

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left[\frac{4 x}{x}-\frac{k \sin k x}{k x}\right] \\
& =\lim _{x \rightarrow 0}\left[4-k \cdot \frac{\sin k x}{k x}\right] \\
& =4-k \cdot \lim _{x \rightarrow 0} \frac{\sin k x}{k x}=1 \\
& =4-k \cdot 1 \\
& =4-k
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}=\frac{0 \sin 0}{1-\cos 0}=\frac{0}{0}$ I.F.

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x \sin x \cdot(1+\cos x)}{(1-\cos x) \cdot(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{x \sin x(1+\cos x)}{\sin ^{2} x}=\sin ^{2} x
\end{aligned}
$$

Divide top E. Bottom by x

$$
=\lim _{x \rightarrow 0} \frac{1+\cos x}{\frac{\sin x}{x}}
$$

$$
\begin{aligned}
=\frac{\lim _{x \rightarrow 0}(1+\cos x)}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}= & \frac{1+\cos 0}{\rightarrow 1} \\
& =\frac{1+1}{1}=2
\end{aligned}
$$

Sep 27-10:28 AM
find points on the graph of $f(x)=x^{2}-6 x+10$
that we have horizontal tar. line.
Non-Calculus method:

Sep 27-10:44 AM
find eqn. of the normal line at $x=\frac{\pi}{3}$ on the graph of $f(x)=\cos x . \quad f\left(\frac{\pi}{3}\right)=\cos \frac{\pi}{3}$

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\cos x \cosh h-\sin x \sinh -\overline{\cos x}}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{\cos x[\cosh h-1]}{h}-\frac{\sin x \sinh }{h}\right] \\
& \left.=\cos x \lim _{h \rightarrow 0}^{\cos h-1}-\sin x \lim _{h \rightarrow 0} \frac{\sinh h}{h}=-\sin x\right]
\end{aligned}
$$

Point $\left(\frac{\pi}{3}, \frac{1}{2}\right)$

$$
\left.\begin{array}{l}
y-y_{1}=m\left(x-x_{1}\right) \\
y-\frac{1}{2}=\frac{2 \sqrt{3}}{3}\left(x-\frac{\pi}{3}\right)
\end{array}\right) \Rightarrow y=
$$

$$
\begin{aligned}
& f(x)=\sin x \rightarrow f^{\prime}(x)=\cos x \\
& f(x)=\cos x \rightarrow f^{\prime}(x)=-\sin x
\end{aligned}
$$

find eau of tan. line at the x-Int of

$$
\begin{aligned}
& f(x)=\frac{x-1}{x+1} \text {. } \\
& y=0 \rightarrow f(x)=0 \\
& \frac{x-1}{x+1}=0 \rightarrow x=1 \\
& m=f^{\prime}(1) \\
& \begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{2}{(1+1)^{2}}=\frac{2}{4}=\frac{1}{2}}{x+h+1}-\frac{x-1}{x+1} \\
& \text { LCD }(x+h+1)(x+1)
\end{aligned} \\
& =\lim _{h \rightarrow 0} \frac{(x+7)(x+h-1)-(x-1)(x+h+1)}{h(x+h+1)(x+1)} \\
& \text { pK } \\
& \text { Point } \\
& \text { Slope } \frac{1}{2} \\
& \left.\begin{array}{l}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{1}{2}(x-1)
\end{array}\right) y=
\end{aligned}
$$

class QZ 9
use calculus method to find all points on the graph of $f(x)=x^{2}+4 x+8$ with horizontal tangent line.

$$
\begin{aligned}
& m=0, f^{\prime}(x)=0 \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+4(x+h)+8-x^{2}-4 x-8}{h} \\
&=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+4 x+4 h+8-x^{2}-4 x-8}{h} \\
&=\lim _{h \rightarrow 0} \frac{h(2 x+h+4)}{h}=\lim _{h \rightarrow 0}(2 x+h+4)=2 x+4 \\
& f^{\prime}(x)=0 \rightarrow 2 x+4=0 \quad f(-2)=(-2)^{2}+4(-2)+8=4-8+8=4 \\
& x=-2 \quad \operatorname{Point}(-2,4)
\end{aligned}
$$

